Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

نویسندگان

  • Gururaj V. Naik
  • Jeremy L. Schroeder
  • Xingjie Ni
  • Alexander V. Kildishev
  • Timothy D. Sands
  • Alexandra Boltasseva
چکیده

The search for alternative plasmonic materials with improved optical properties, easier fabrication and integration capabilities over those of the traditional materials such as silver and gold could ultimately lead to real-life applications for plasmonics and metamaterials. In this work, we show that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions. © 2012 Optical Society of America OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics. References and links 1. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). 2. S. Lal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007). 3. D. Smith, J. Pendry, and M. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). 4. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, 2009). 5. J. Pendry, D. Schurig, and D. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). 6. C. Soukoulis, S. Linden, and M. Wegener, “Physics: negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). 7. V. Shalaev, “Transforming light,” Science 322, 384–386 (2008). 8. J. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). 9. Z. Jacob, L. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). 10. S. Ramakrishna, J. Pendry, M. Wiltshire, and W. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003). 11. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). 12. A. Kildishev and V. Shalaev, “Engineering space for light via transformation optics,” Opt. Lett. 33, 43–45 (2008). 13. E. Narimanov and A. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). 14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). #160717 $15.00 USD Received 3 Jan 2012; revised 27 Feb 2012; accepted 28 Feb 2012; published 27 Mar 2012 (C) 2012 OSA 1 April 2012 / Vol. 2, No. 4 / OPTICAL MATERIALS EXPRESS 478 15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1686 (2007). 16. V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). 17. G. Dolling, M. Wegener, C. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32, 53–55 (2007). 18. D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). 19. T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). 20. A. Boltasseva and H. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011). 21. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). 22. G. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” Phys. Status Solidi (RRL) 4, 295–297 (2010). 23. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010). 24. M. Noginov, L. Gu, J. Livenere, G. Zhu, A. Pradhan, R. Mundle, M. Bahoura, Y. Barnakov, and V. Podolskiy, “Transparent conductive oxides: Plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011). 25. A. Frölich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011). 26. T. Minami, “New n-type transparent conducting oxides,” MRS Bull. 25, 38–44 (2000). 27. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011). 28. D. Park, T. Cha, K. Lim, H. Cho, T. Kim, S. Jang, Y. Suh, V. Misra, I. Yeo, J. Roh, J. Park, and H. Yoon, “Robust ternary metal gate electrodes for dual gate CMOS devices,” in Electron Devices Meeting, 2001. IEDM Technical Digest. International (IEEE, 2001), pp. 30–36. 29. L. Hiltunen, M. Leskela, M. Makela, L. Niinisto, E. Nykanen, and P. Soininen, “Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method,” Thin Solid Films 166, 149–154 (1988). 30. S. Aouadi and M. Debessai, “Optical properties of tantalum nitride films fabricated using reactive unbalanced magnetron sputtering,” J. Vac. Sci. Technol. A 22, 1975–1979 (2004). 31. P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys. 90, 4725–4734 (2001). 32. B. Johansson, J. Sundgren, J. Greene, A. Rockett, and S. Barnett, “Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering,” J. Vac. Sci. Technol. A 3, 303–307 (1985). 33. W.-C. Chen, Y.-R. Lin, X.-J. Guo, and S.-T. Wu, “Heteroepitaxial TiN of Very Low Mosaic Spread on Al2O3,” Jpn. J. Appl. Phys. 42, 208–212 (2003). 34. V. Drachev, U. Chettiar, A. Kildishev, H. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008). 35. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006). 36. C. Davis, D. McKenzie, and R. McPhedran, “Optical properties and microstructure of thin silver films,” Opt. Commun. 85, 70–82 (1991). 37. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46, 2503–2511 (1992). 38. K. Chen, V. Drachev, J. Borneman, A. Kildishev, and V. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010). 39. X. Ni, Z. Liu, and A.V. Kildishev, “PhotonicsDB: Optical Constants,” http://nanohub.org/resources/PhotonicsDB. (doi:10254/nanohub-r3692.10) (2010). 40. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). 41. S. Maier, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009). 42. M. Cortie, J. Giddings, and A. Dowd, “Optical properties and plasmon resonances of titanium nitride nanostructures,” Nanotechnol. 21, 115201 (2010). 43. Z. Jacob, I. Smolyaninov, and E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Arxiv preprint arXiv:0910.3981 (2009). 44. Z. Jacob, J.-Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010). 45. G. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials 5, 1–7 (2011). 46. G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Negative refraction in Al:ZnO/ZnO metamaterial in the near-infrared,” Arxiv preprint arXiv:1110.3231 (2011). #160717 $15.00 USD Received 3 Jan 2012; revised 27 Feb 2012; accepted 28 Feb 2012; published 27 Mar 2012 (C) 2012 OSA 1 April 2012 / Vol. 2, No. 4 / OPTICAL MATERIALS EXPRESS 479 47. A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007). 48. V. Podolskiy and E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Phys. Rev. B 71, 201101 (2005). 49. J. Elser, V. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007). 50. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007). 51. A. Hibbins, J. Sambles, and C. Lawrence, “Surface plasmon-polariton study of the optical dielectric function of titanium nitride,” J. Mod. Opt. 45, 2051–2062 (1998). 52. X. Ni, Z. Liu, A. Boltasseva, and A. Kildishev, “The validation of the parallel three-dimensional solver for analysis of optical plasmonic bi-periodic multilayer nanostructures,” Appl. Phys. A 100, 365–374 (2010).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles.

Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated ...

متن کامل

Nitrides as alternative materials for localized surface plasmon applications

Optical responses of titanium nitride and zirconium nitride are studied in the visible and near-infrared regions for localized surface plasmon applications. Both materials are found to be promising alternatives to noble metals. OCIS codes: (250.5403) Plasmonics; (160.4236) Nanomaterials Localized surface plasmon resonances (LSPR) have been studied intensely for the last few decades. Other than ...

متن کامل

Plasmonics on the slope of enlightenment: the role of transition metal nitrides.

The key problem currently faced by plasmonics is related to material limitations. After almost two decades of extreme excitement and research largely based on the use of noble metals, scientists have come to a consensus on the importance of exploring alternative plasmonic materials to address application-specific challenges to enable the development of new functional devices. Such a change in m...

متن کامل

Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the wellknown scattering efficiency, is a more flexible and ...

متن کامل

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance

DENSE PERIODICAL PATTERNS IN PHOTONIC DEVICES:TECHNOLOGY FOR FABRICATION AND DEVICE PERFORMANCEbySABARISH CHANDRAMOHANDecember 2016 Advisor: Dr. Ivan AvrutskyMajor: Electrical EngineeringDegree: Doctor of Philosophy For the fabrication, focused ion beam parameters are investigated to successfullyfabricate dense periodical patterns, such as gratings, on hard transitio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012